
Time Series Analysis Project: Precious Metals
Justin Chan, Ameer Dharamshi, Vivian Ngo

Abstract

A stable index is a basket of assets used to represent the current state of the market. In order to accurately
depict the overall health of the market, it is important that the index has minimal variance so that it is
not prone to excessive fluctuations or risk. In this report we construct a stable minimum variance index
using a basket of currencies, cryptocurrencies, and precious metals. The index is updated on a quarterly
basis as more data is crystallized. Prior to constructing the index, we begin by pre-processing the data,
exploring the data to understand its structure, and analysing the assets individually and as a collection from
a statistical perspective. Using our findings, we optimize the weights of the basket to minimize the variance
of the index. This process involves the covariance matrix for the group of assets. This construction of the
covariance matrix is rooted in the findings of the exploratory and preliminary analysis. Finally, we consider
the predictive power of ARIMA models as applied to individual assets and we explore the idea of whether
the random walk hypothesis holds true.

Data Preparation: Cleaning, Imputation, and Conversions

Perhaps the most critical step in the data analysis process is the data processing phase. Without a solid
foundation to work with, any analysis performed is suspicious at best. With financial market data, the market
exchanges produce open, high, low, close prices on each trading day. For the purposes of this project, we
decided to use the closing price of the assets as they most accurately reflect the market sentiment for the
trading day. In addition, certain assets only offered (XDR-USD, BTC, ETH, etc) close prices and thus for
consistency, close prices are the best choice.

However, closing price data was not available for all Dates. Therefore, we need to consider which data points
to remove or impute. After some conceptual considerations, it was decided to only keep data for the days
that the US markets were active. As the markets are closed on weekends and holidays, there is a consistent
pattern of missingness among the exchange traded data. If we were to impute these days, we would likely
introduce significant serial correlation. Furthermore, the market is not open on weekends and holidays so,
in a sense, weekends and holidays do not exist in the trading universe and thus it would not make sense to
impute prices for these days.

Any other missing data points were imputed using the most recent available price as under the random walk
hypothesis, the prior day is the best indicator of the next day. Note that the impact of this decision should
be quite small because the number of imputed data points is very small relative to the size of the dataset.
Finally, there was one specific instance of seemingly non-random missingness. There was one week in May
2018 where the XDR-USD data was missing. Given that this was an isolated incident, we once again applied
our roll forward of the immediately preceding trading day.

The other major step in the data processing component was to convert the data to XDR. We first checked to
confirm that all assets were in units of USD. This was the case except for the CNY-USD data, which was
reversed. We converted the data into units of XDR by multiplication (or division) with the XDR-USD column.
In addition, a USD column was created by effectively multiplying the XDR-USD column by 1 (i.e. the column
is already USDs in units of XDR).

1

Univariate Analysis

Before creating the index, it was important to explore the structure of the data and detect the properties
that would be useful for our analysis. The first step in the EDA process was to simply investigate the raw
prices of each asset. In order to see the distribution of the prices, we first plotted the kernel density for the
prices of every asset.

As we can see below, the distribution of the raw prices is either multimodal or skewed, or a combination
of both, for every asset. As such, it is not likely that the prices of any of these assets follow a normal or t
distribution.

XMR XRP

GOLD JPY SILVER USD

BTC CNY ETH EUR

0 100 200 300 0.0 0.5 1.0 1.5 2.0

900 1000 1100 0.620.640.660.680.70 10 11 12 13 14 0.70 0.72 0.74

0 5000 10000 0.1020.1040.1060.1080.110 0 250 500 750 0.780.800.820.840.86
0

5

10

15

20

0

10

20

30

0.000

0.001

0.002

0.003

0.0
0.1
0.2
0.3
0.4

0

100

200

300

0

10

20

30

0

1

2

3

0e+00

5e−05

1e−04

0.000

0.005

0.010

0.015

0.0000

0.0025

0.0050

0.0075

Value

de
ns

ity

Figure 1: Kernel Density Plots of Raw Price Data

We also produced the time series plots of the raw prices to see if they were stationary for any asset. As we
can see in the time series plots below, the raw prices do not appear to be stationary for any of the assets.
One main issue that indicates this is that there does not appear to be a common mean price that the time
series returns to.

2

XMR XRP

GOLD JPY SILVER USD

BTC CNY ETH EUR

2017 2018 2019 2017 2018 2019

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

0.78
0.80
0.82
0.84
0.86

0.70

0.72

0.74

0

250

500

750

10
11
12
13
14

0.102
0.104
0.106
0.108
0.110

0.62
0.64
0.66
0.68
0.70

0.0
0.5
1.0
1.5
2.0

0

5000

10000

900

1000

1100

0

100

200

300

Date

V
al

ue
Figure 2: Time Series Plot of Raw Prices

To formally test whether these time series are stationary, we also conducted a KPSS test for each asset. Table
1 below is consistent with our observations from the figure above. Because the KPSS test yielded p-Values of
less than 0.05 for every asset’s price series, there is evidence against the null hypotheses that the series are
each stationary around a mean or linear trend. As such, we tried various transformations of the data in an
attempt to find stationary series. One common method of introducing stationarity that we applied is the
differencing operator. In addition, we also transformed the raw price data with the logarithm function as the
concavity of the transformation is useful for spacing out data points that are grouped together and pushing
Values together when they are very spaced out. Because of this concavity, we also expect that log returns
will exhibit both of the useful properties of stationarity and symmetry.

Table 1: P-Values from the KPSS Test for different data transformations
BTC ETH EUR GOLD JPY SILVER CNY USD XMR XRP

Prices 0.01 0.010 0.010 0.01 0.010 0.010 0.01 0.01 0.01 0.010
Diff in Prices 0.01 0.100 0.100 0.10 0.064 0.081 0.10 0.10 0.10 0.100
Log Prices 0.01 0.010 0.010 0.01 0.010 0.010 0.01 0.01 0.01 0.010
Net Returns 0.01 0.092 0.020 0.10 0.078 0.092 0.10 0.10 0.10 0.040
Gross Returns 0.01 0.092 0.020 0.10 0.078 0.092 0.10 0.10 0.10 0.040
Log Returns 0.01 0.098 0.028 0.10 0.078 0.089 0.10 0.10 0.10 0.065

In Table 1 above, we see that the transformations were mostly successful as now the log return data does not
reject the stationary null hypothesis except for the bitcoin and euro data. This conclusion is supported in the
time series plots below as we can see that the log returns do indeed appear more stationary than the raw
prices. However, the log returns of bitcoin do appear to have significant periods of volatility clustering and
the euro data appears to have a non-constant variance.

3

XMR XRP

GOLD JPY SILVER USD

BTC CNY ETH EUR

2017 2018 2019 2017 2018 2019

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

2017 2018 2019 2017 2018 2019 2017 2018 2019 2017 2018 2019

−0.02

−0.01

0.00

0.01

−0.005

0.000

0.005

0.010

−0.2

0.0

0.2

0.4

−0.050
−0.025

0.000
0.025
0.050

−0.01

0.00

0.01

−0.02

−0.01

0.00

0.01

−0.4

0.0

0.4

0.8

−0.2
−0.1

0.0
0.1
0.2

−0.02
−0.01

0.00
0.01
0.02
0.03

−0.2

0.0

0.2

0.4

Date

V
al

ue
Figure 3: Time Series Plot of Log Returns

The boxplots and density plots below also support the conclusion that the log returns are more symmetric
than the raw prices. After constructing time series plots, boxplots, and kernel density plots for the net
returns, gross returns, and differences in prices, we found that the log returns exhibited the most desireable
properties.

−0.4

0.0

0.4

0.8

BTC CNY ETH EUR GOLD JPY SILVER USD XMR XRP

asset

V
al

ue

Figure 4: Boxplots of Log Return Data

4

XMR XRP

GOLD JPY SILVER USD

BTC CNY ETH EUR

−0.2 0.0 0.2 0.4 −0.4 0.0 0.4 0.8

−0.02−0.01 0.00 0.01 0.02 0.03 −0.02 −0.01 0.00 0.01 −0.050−0.025 0.000 0.025 0.050 −0.005 0.000 0.005 0.010

−0.2 −0.1 0.0 0.1 0.2 −0.01 0.00 0.01 −0.2 0.0 0.2 0.4 −0.02 −0.01 0.00 0.01
0

25
50
75

100

0
50

100
150
200
250

0
3
6
9

0
10
20
30
40

0
50

100
150
200

0
25
50
75

0
3
6
9

0
5

10
15

0
20
40
60
80

0
2
4
6
8

Value

de
ns

ity
Figure 5: Kernel Density Plots of Log Return Data

Finally, it would be helpful to investigate what the distribution of the log returns is. Below is the collection of
normal quantile-quantile plots for the log returns. Clearly, there is some indication of tail heaviness compared
to the normal distribution.

XMR XRP

GOLD JPY SILVER USD

BTC CNY ETH EUR

−2 0 2 −2 0 2

−2 0 2 −2 0 2 −2 0 2 −2 0 2

−2 0 2 −2 0 2 −2 0 2 −2 0 2

−0.02

−0.01

0.00

0.01

−0.005

0.000

0.005

0.010

−0.2

0.0

0.2

0.4

−0.050
−0.025

0.000
0.025
0.050

−0.01

0.00

0.01

−0.02

−0.01

0.00

0.01

−0.4

0.0

0.4

0.8

−0.2
−0.1

0.0
0.1
0.2

−0.02
−0.01

0.00
0.01
0.02
0.03

−0.2

0.0

0.2

0.4

theoretical

sa
m

pl
e

Figure 6: Quantile−Quantile Plots of Log Return Data

The Shapiro-Wilks test for normality, when conducted on the log returns, also yields p-values that are much
smaller than 0.05. This suggests that there is significant evidence to reject the null hypothesis that the log
returns of the assets are normally distributed.

5

Table 2: P-Values from the Shapiro Wilks Test for Log Return Data
Asset P-Value
BTC 3.00476578155941e-17
ETH 2.84873610700972e-20
EUR 7.41974546492912e-05
GOLD 1.99875251980354e-08
JPY 9.22703160339301e-06
SILVER 5.47333946607765e-14
CNY 3.35680350345856e-13
USD 5.13773867753304e-10
XMR 1.93024686892347e-17
XRP 6.36674506423801e-30

As we can see from the table above, there is some concave-convex pattern in most of the QQ plots. This is
an indication that the log returns are distributed with heavier tails than the normal distribution. To capture
this tail heaviness, we decided to fit t distributions to the data instead. Below are the sets of estimated
parameters, AIC, BIC, and log likelihood values that are produced when the log returns are fitted to the
standardized t distribution and the skewed t distribution.

Table 3: Parameter Estimates, AIC, BIC, and Log Likelihood for Log Returns fitted to Standardized t
Distribution

Asset mean sd df AIC BIC Log Likelihood
BTC 0.005 0.122 2.099 -2567.276 -2553.38 1286.638
ETH -0.001 0.49 2.01 -2095.43 -2081.534 1050.715
EUR 0 0.004 11.972 -6172.409 -6158.513 3089.204
GOLD 0 0.006 4.704 -5593.928 -5580.032 2799.964
JPY 0 0.005 7.629 -5969.042 -5955.146 2987.521
SILVER 0 0.012 3.682 -4751.079 -4737.183 2378.539
CNY 0 0.003 4 -7039.763 -7025.867 3522.881
USD 0 0.002 4 -7281.957 -7268.061 3643.979
XMR -0.001 0.087 2.823 -1910.081 -1896.185 958.041
XRP -0.004 1.682 2.001 -2001.309 -1987.413 1003.655

Table 4: Parameter Estimates, AIC, BIC, and Log Likelihood for Log Returns fitted to Skewed t Distribution
Asset mean sd df epsilon AIC BIC Log Likelihood
BTC 0.003 0.118 2.108 0.967 -2565.948 -2547.42 1286.974
ETH 0.003 0.285 2.032 1.089 -2097.589 -2079.061 1052.794
EUR 0 0.005 4 1 -6150.937 -6132.409 3079.468
GOLD 0 0.007 4 1 -5591.085 -5572.557 2799.543
JPY 0 0.005 4 1 -5956.747 -5938.219 2982.374
SILVER 0 0.012 3.696 0.957 -4749.855 -4731.327 2378.927
CNY 0 0.003 4 1 -7037.789 -7019.261 3522.894
USD 0 0.002 4 1 -7279.975 -7261.447 3643.988
XMR 0.003 0.087 2.821 1.091 -1912.017 -1893.489 960.008
XRP 0.002 0.642 2.007 1.11 -2005.574 -1987.046 1006.787

The AIC, BIC, and log likelihood values for both the standardized t distribution and skewed t distribution
are quite similar. For many assets, there is no clear choice between the two models. For example, Etherium
has a lower AIC under the skewed t distribution but also a lower BIC under the standardized student’s t
distribution. Therefore, if we were to pick a model based on a better AIC model, we would choose the skewed

6

t distribution, but we would choose the standardized t distribution if we were to pick a model based on BIC.
The log likelihoods are also similar for both models, so there is no clear advantage or disadvantage to using
either.

Thus, for all of the assets, both the standardized t distribution and skewed t distribution perform similarly
well. Based on AIC, BIC, and the log likelihood, there is no clear advantage of using one model over the
other. However, one important consideration is parsimony. We prefer models which are parsimonious and are
able to achieve a desired level of explanatory or predictive power while using as few predictors as possible.
Therefore, in this case, we would prefer to use the standardized student’s t distribution which requires one
less parameter.

In the figure below, we have sampled some data that follow the distributions estimated above. As we can see,
the sampled data from the standardized t distributions do indeed fit the log returns quite nicely.

0

5

10

15

Values

de
ns

ity

BTC

0

3

6

9

Values

de
ns

ity

ETH

0

30

60

90

Values
de

ns
ity

EUR

0
20
40
60
80

Values

de
ns

ity

GOLD

0

25

50

75

Values

de
ns

ity

JPY

0
10
20
30
40
50

Values

de
ns

ity

SILVER

0

50

100

150

200

Values

de
ns

ity

CNY

0
50

100
150
200
250

Values
de

ns
ity

USD

0
2
4
6
8

Values

de
ns

ity

XMR

0

3

6

9

Values

de
ns

ity

XRP

Labels

Log Returns

Std t Samples

Figure 7: Estimated t distributions for Log Returns

Multivariate Analysis

Recall that in the Univariate Analysis phase, we found that the raw price data was clearly not generated
from a normal or t distribution given the presence of multimodality among other noisy features. However,
the t distribution represented the log transform of the gross returns (log returns) of each asset fairly well. It
is natural to next turn to multivariate models to attempt to capture any relationships between the assets. To
motivate this analysis, we look at the correlations between the assets.

7

Corr:
0.557

Corr:
0.582

Corr:
0.599

Corr:
0.396

Corr:
0.366

Corr:
0.415

Corr:
0.0232

Corr:
0.0484

Corr:
−0.0364

Corr:
−0.0195

Corr:
0.011

Corr:
−0.011

Corr:
−0.0314

Corr:
−0.0308

Corr:
0.432

Corr:
−0.062

Corr:
−0.0538

Corr:
−0.0652

Corr:
−0.021

Corr:
0.246

Corr:
0.151

Corr:
0.00575

Corr:
−0.0541

Corr:
−0.0257

Corr:
−0.035

Corr:
0.147

Corr:
0.244

Corr:
0.374

Corr:
0.0691

Corr:
0.0483

Corr:
0.0113

Corr:
0.0292

Corr:
0.168

Corr:
0.309

Corr:
0.131

Corr:
−0.18

Corr:
0.0283

Corr:
0.0195

Corr:
−0.0138

Corr:
0.00817

Corr:
0.187

Corr:
0.236

Corr:
0.252

Corr:
−0.124

Corr:
0.622

BTC ETH XMR XRP EUR JPY CNY USD GOLD SILVER
B

T
C

E
T

H
X

M
R

X
R

P
E

U
R

JP
Y

C
N

Y
U

S
D

G
O

LD
S

ILV
E

R
Figure 8: Correlation between Assets

In the above plot we have plotted pairwise scatterplots of the log returns to search for any meaningful
correlation values. We can see that certain pairs such as gold and silver have high correlation values of 0.622
though many are rather insignificant. The following plots present a much more important characteristic of
the log returns:

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

B
T

C
E

T
H

X
M

R
X

R
P

E
U

R
JP

Y
C

N
Y

U
S

D
G

O
LD

S
IL

V
E

R

BTC
ETH

XMR
XRP

EUR
JPY

CNY
USD
GOLD

SILVER

Figure 9: Prices Correlation

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

B
T

C
E

T
H

X
M

R
X

R
P

E
U

R
JP

Y
C

N
Y

U
S

D
G

O
LD

S
IL

V
E

R

BTC
ETH

XMR
XRP

EUR
JPY

CNY
USD
GOLD

SILVER

Figure 10: Log Returns Correlation

8

The difference between the price data and the log return data is quite striking. The price data seems to
imply most of the market is moving together, other than the assets that are commonly considered safe, such
as JPY. On the contrary, the log return correlations paint a different picture. There is a clear separation
between the cryptocurrencies and the other assets. Had we only considered distinct univariate models, we
would have had no chance of capturing this structure. These findings motivate the search for a representative
multivariate model for the log return data.

First considering the entire log returns dataset, we search for the parameters of a multivariate t distribution
by examining the profile likelihood of the degrees of freedom parameter and selecting the maximum. As seen
in the plot below, the value of ν = 3.85 is optimal.

23600

23625

23650

23675

2 4 6 8 10

df

lo
gl

ik

Figure 11: Log Returns Multivariate t Profile Likelihood

To verify that this model performs better than similar models, we can compare the AIC value at ν = 3.85
of -47245.76 to AIC values of a normal and skewed t distribution. The normal distribution’s AIC value of
-45913.77 is significantly larger than that of the t distribution indicating that it does not fit the model as well
as the t distribution. Moreover, the skewed-t has an AIC value of -47059.66 which, while better than the
normal, suffers from the increased parameter count and is a less parsimonious model.

Following our analysis, we have a better method of constructing a covariance matrix for the assets under
investigation. As the t distribution models the log returns better than the normal distribution, generating a
covariance matrix under the multivariate t distribution for each quarter end using the prior 6 months of data
offers a better alternative to the sample covariance matrix for index construction.

9

Building the Index

0 100 200 300 400 500 600

10
0

11
0

12
0

13
0

14
0

Figure 12: Index Values for Ideal Weighting

Day

In
de

x
V

al
ue

2 4 6 8 10

0
10

20
30

40
50

Figure 13: Variances for Ideal Weighting

Quarter

V
ar

ia
nc

e

Having completed the exploratory and distribution modelling analyses, we can now move on to the index
construction compoenent of this analysis. Our first objective is to construct an index encompassing the
currency, cryptocurrency, and precious metals assets that minimizes variance. This will then act as an

10

indicator of the overall performance of the market.

Framing the Optimization Problem as a Quadratic Program

Since each asset has non-zero correlation with the others, it is not enough to consider their variances separately.
Instead, we must consider the covariance matrix. In particular, we would like to exploit negative correlations
in order to reduce the variance. Each asset is a correlated random variable, and the index is the sum of
weighted correlated random variables. Given some covariance matrix (to be described later in this section),
the variance of the weighted sum is:

V ar(S) = wT Σw

where the weighted sum itself is:

S = wTA

where A is the vector of correlated items (e.g. log returns). We were also given some additional constraints,
namely that each weight must be between 1% and 25%, and the weights must sum to 1. Therefore, the
problem is:

minww
T Σw

st ΣN
n=1wn = 1, wn ≥ 0.01, wn ≤ 0.25 ∀n ∈ 1, ..., N

This is a quadratic program and so we used the quadprog library in R in order to find the weights for each
quarter. The rest of this section discusses various ways we tried to build the covariance matrix from which
we then optimized the weights.

Covariance of Prices

The index value is defined as:

I(t) = ΣN
n=1w

i
n

I(Ti)
An(Ti)

An(t) = ΣN
n=1w

i
nknAn(t)

where the index I(Ti) an the asset value An(Ti) are effectively extra weights (called kn for short). The item
whose covariance we are seeking is therefore:

{knAn(t)}

And we thus require the covariance matrix:

C(n,m) = Cov(knAn(t), kmAm(t))

This method also allows us to compute the “ideal” weights by using the true asset prices in the next quarter
instead of attempting to predict the covariance in the next quarter. These ideal weights gave us the ideal
index with which to compare all the other methods we tried. The ideal weights are weights that still meet
the original constraints (e.g. between 1% and 25%), but cheat by using the true covariance and asset prices
within each quarter. We expect that each method will yield a variance bounded below by the ideal variance.

11

Since we will not know the true covariance during each quarter (because it is in the future), we use the
sample covariance from the past 6 months as our estimate. Other estimates of the future covariance follow.

Covariance of Log-Returns

Instead of attempting to estimate the covariance of the weighted asset prices directly, we instead try to
estimate the covariance of the log returns. As before, the log-returns are calculated for each asset over the
past 6 months, and the covariance of the log-returns in the future is estimated as the sample covariance of
the log-returns over the past 6 months.

Covariance of Log-Returns from Fitted t-distribution

As discussed under the Multivariate Analysis section, the naive historical 6-month sample covariance matrix
is a model-free Monte Carlo estimate, but the t-distribution fits the log returns well. Under this approach,
we fit a multivariate t-distribution using the past 6 months of data and use the MLE of the covariance matrix
as the input into the optimization problem.

Bias-Corrected Exponential Smoothing

The sample covariance of returns (or prices) from the past 6 months may not be the best estimate of the
covariance in the next quarter. We therefore attempt to use an exponentially-weighted moving-average
estimate (Ruppert & Matteson; Ch14: GARCH Models) in order to best capture any volatility clustering
that may occur. If high volatility occurred too far in the past, EWMA will forget about it. If high volatility
occurred recently, then EWMA ensures that it will have a greater effect on future predictions.

One problem with EWMA is that because the initial value of the output is zero, early estimates are biased
toward zero. A visualization of the problem is shown below:

Figure 14: Bias Correction

We therefore modified Ruppert & Matteson’s EWMA estimate using bias-correction. Without bias-correction,
the EWMA update for the covariance would be:

12

µ̂N = αµ̂N−1 + (1− α)xN , V̂N = αV̂N−1 + (1− α)xNx
T
N

Σ̂N = V̂N − µ̂N µ̂
T
N

With bias-correction, we add 2 additional updates for the first and second moments and estimate the
covariance as follows:

µ̂′N = 1
1− αN

µ̂N , V̂ ′N = 1
1− αN

V̂N

Σ̂N = V̂ ′N − µ̂′N (µ̂′N)T

In the below results, we tested the bias-corrected EWMA of both weighted asset prices and of log-returns for
our estimate of the covariance in the next quarter as input into the quadratic program.

EWMA Decay Rate

The decay rate for EWMA (denoted by α above) is a hyperparameter that can be optimized. We used a grid
search to find the best decay rate over all quarters by choosing the one that yielded the minimum average
variance in each quarter.

Ideally, we would have used a separate validation set to pick the best decay rate, but only a limited number
of quarters were available in the dataset.

For prices, the best decay rate was found to be 0.6551693. For log-returns, the best decay rate was found to
be 0.7655131.

Figure 15: Optimal Rate of Decay

0.5 0.6 0.7 0.8 0.9 1.0

15
25

Average Variance using Prices vs. Decay Rate

Rate of Decay

A
ve

ra
ge

 V
ar

ia
nc

e

0.6 0.7 0.8 0.9 1.0

11
13

15

Average Variance using Log−Returns vs. Decay Rate

Rate of Decay

A
ve

ra
ge

 V
ar

ia
nc

e

The relatively small values for the decay rate indicate that forgetting about earlier risk measurements was
useful, and that more recent volatility measurements matter more. This makes sense in light of volatility
clustering.

Index Performance Results

The chart below shows the index value per unit time for each method we tested compared with the ideal
weightings.

13

Figure 16: Index Values Comparison

0 100 200 300 400 500 600

10
0

11
0

12
0

13
0

14
0

Day

In
de

x
V

al
ue

s

price
log−return
ewma price
ewma log−return
fitted−t log−return
ideal

We see that all indexes take on a similar shape, but the ideal weightings yield an index with generally lower
values than the others.

The chart below plots the variance per quarter for each of the weighting schemes.

Figure 17: Index Variance per Quarter Comparison

2 4 6 8 10

0
20

40
60

Quarter

In
de

x
V

ar
ia

nc
es

price
log−return
ewma price
ewma log−return
fitted−t log−return
ideal

One can see that the ideal weights do indeed lower bound all the other methods. Using the log-returns (both
the standard estimate and EWMA) are a close tie with each other, but smaller than using prices, especially
in the last few quarters.

14

The table below summarizes the average variance per quarter for each of the methods discussed above.

Table 5: Comparison of Methods
Method Average Variance Per Quarter
Price 11.90243
Price EWMA 11.7104
Log-Return 11.56243
Log-Return t-dist 11.56862
Log-Return EWMA 10.51929
Ideal 8.602228

We now compare our minimum variance index (Log-Return EWMA) with single asset indices (BTC, USD,
and Gold). Each of the single assets had the highest weights (or were tied for the highest weights) for the
quarter after March 31, 2017.

The index values are shown in the chart below:

0 100 200 300 400 500 600

50
0

10
00

15
00

Figure 18: Our index values vs Single asset index

Day

In
de

x
V

al
ue

btc
mixed
usd
gold

Because the index values for BTC-only are disproportionately large, it is useful to consider the log of the
index values as well:

15

0 100 200 300 400 500 600

4
5

6
7

8
9

10

Figure 19: Log of our index values vs Single asset index

Day

Lo
g

In
de

x
V

al
ue

btc
mixed
usd
gold

The variance per quarter of our index compared with single asset indices are shown below:

2 4 6 8 10

0
50

00
0

10
00

00
15

00
00

Figure 20: Our index variance vs. Single asset variance

Quarter

V
ar

ia
nc

e

btc
mixed
usd
gold

Again, since the variance of the BTC-only index is disproportionately high, we show the log-variances also:

16

2 4 6 8 10

0
5

10
15

Figure 21: Log of our index variance vs. Single asset variance

Quarter

V
ar

ia
nc

e

btc
mixed
usd
gold

Our index has a smaller variance than gold in some quarters, and is bounded below only by USD.

Overall, it is encouraging to see that the index benefitted from the jump in price in cryptocurrency in late
2017, while not suffering from any sharp drop-off when cryptocurrency plunged in early 2018. Instead, all the
indices we created maintained their values after the cryptocurrency jump with relatively low volatility.

Time Series & Forecasting

Having constructed a minimum variance index to represent the current state of the market at any given point
in time, we are now interested in seeing if we can develop models to forecast the future performance of each
asset. During the EDA phase, we identified the log-returns as the most symmetric and seemingly stationary
transformation of the data. If this is the case, we can begin by attempting to model the log-prices as an
ARIMA(p,1,q) process. It is often floated around that market prices cannot be predicted and are simply a
random walk. If this is the case, we should expect that an ARIMA(0,1,0) process we be the best performing
model. The objective of this section will be to examine the validity of the random walk hypothesis by fitting
optimal ARIMA models to each asset. To test the predictive power of such a model, we will remove the last
quarter from the dataset and fit the model with the remainder of the data. Then, we will examine how well
the final quarter can be estimated.

The following table displays the optimal ARIMA models chosen by minimizing the BIC. We decided to use
BIC instead of AIC as the difference in AIC between models is quite small and thus to choose the most
parsimonious model, we introduce the penalty for excessive parameters through the BIC.

Interestingly, most of the models produced are very low parameter models, with ARIMA(0,1,0) being the
most frequent. However, assets such as silver produce higher parameter models indicating that the time series
is not simply a random walk. However, before drawing any conclusions, we must examine the time series
and autocorrelation plots of the residuals to determine if there is any indication that the residuals are not
stationary. In the interest of space, only the ACF plots are displayed below.

17

Table 6: Optimal Arima Models
p d q BIC

BTC 0 1 0 -2200.438
ETH 0 2 1 -1689.836
EUR 0 1 1 -5712.552
GOLD 0 1 0 -5148.268
JPY 1 1 0 -5455.909
SILVER 2 1 1 -4317.230
CNY 0 1 0 -6424.862
USD 0 1 0 -6597.729
XMR 0 1 0 -1598.493
XRP 1 1 1 -1374.934

Figure 22: Residual ACF Plots

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

BTC

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

ETH

0 30

0.
0

0.
4

0.
8

Lag

A
C

F
EUR

0 30
0.

0
0.

4
0.

8

Lag

A
C

F

GOLD

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

JPY

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

SILVER

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

CNY

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

USD

0 30

0.
0

0.
4

0.
8

Lag

A
C

F

XMR

0 30

−
0.

2
0.

2
0.

6
1.

0

Lag

A
C

F

XRP

We can clearly see that there is no consistent pattern of significant autocorrelation in the residuals. This is
supported by the Box-Ljung tests performed. For each asset, we tested the lag parameter equal to 5, 10,
and 25. Each instance did not reject the null hypothesis for lag values of 5 and 10 though the ethereum did
detect the presence of minor autocorrelation in the lag 25 instance and the xrp data did find autocorrelation
in the lag 25 case. For xrp, we can see the negative spike in the ACF plot at the lag 15 mark. As this is not
a consistent pattern of autocorrelation and we know that the cryptocurrency is very noisy and definitely not
stationary, we do not take the minor presence of autocorrelation as invalidating the models. As a whole, the
ARIMA models do appear to fit well.

Finally, to test the predictive power of these models, we have forecasted the final quarter of the dataset along
with 95% confidence intervals. The forecast and confidence intervals are then imposed on the time series
plots to gauge how well the forecasts performed.

18

8.0
8.5
9.0
9.5

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

BTC

4
5
6
7
8

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

ETH

−0.24
−0.22
−0.20
−0.18

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

EUR

6.8

6.9

7.0

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

GOLD

−0.44
−0.40
−0.36

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

JPY

2.3
2.4
2.5
2.6

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

SILVER

−2.28
−2.26
−2.24
−2.22

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

CNY

−0.36
−0.34
−0.32
−0.30

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

USD

3.0
3.5
4.0
4.5
5.0
5.5

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

XMR

−3
−2
−1

0
1

2018−07 2019−01 2019−07

date

Lo
g.

P
ric

e

XRP

Figure 23: Log Price Forecasts

In summary, the actual forecasts (blue line) are not necessarily accurate. Note that the random walk models
produce a constant forecast given that the expected value is 0. However, in general, the 95% confidence
intervals do seem to contain the actual log-prices aside from the extremely large positive fluctuations in the
precious metals data. While the gold model was a random walk and would not have benefited much from
seeing the additional data, the silver model was more complex and had not been fit with any strong positive
differences data. Thus, it is possible that the data used to fit the silver model was not representative of the
complete behaviour of the asset. For the more stable assets, the forecasts do perform well and the actual
log-prices are often very close to the predicted log-prices. Given the results of the forecast, even models that
did not employ the random walk model performed well, indicating that there may be more than random
behaviour driving market prices.

19

Conclusion

Through the analysis of the market data and construction of a stable index, a few important conclusions
have been identified. First of all, we have reinforced the notion that while raw market price data is far too
noisy to analyse from a time series perspective, the log-transform and differencing operators together are able
to consistently induce symmetry and stationarity. We also reinforced the conclusion that the t-distribution’s
heavy-tails model market log-returns quite well. Extending this conclusion to the multivariate domain, the
multivariate t-distribution not only captures the heavy-tailed aspects, but also considers the dependency
structure observed in the data. This observation was then employed in the index construction component.
We attempted a variety of methods of constructing a covariance matrix to insert into the minimum variance
objective and found that log-return EWMA was optimal (excluding the true future covariance matrix).
Finally, we posed the question of whether market data was simply a random walk or if there was some
underlying structure in each asset that could be exploited for forecasting purposes. While many of the assets
were best modelled by a random walk, we did find that certain assets such as Silver and Ripple did have
statistically significant parameters. We found that the actual market behaviour in the final quarter of the
dataset consistently fell within the 95% confidence interval of the ARIMA forecasts. This suggests that there
is reason to believe that these models do have the capability to model the financial markets.

20

R Code Used

library(MASS)
library(dplyr)
library(fGarch)
library(tidyverse)
library(ggplot2)
library(GGally)
library(xts)
library(forecast)
library(grid)
library(gridExtra)
library(corrplot)
library(RColorBrewer)
library(dplyr)
library(mnormt)
library(sn)
library(knitr)
library(kableExtra)

DATAFRAMES
raw data - close prices
prices<-read.csv("datav2.csv") ## DATAFRAME TO USE
prices <- prices %>% mutate(Date = as.Date(as.character(prices$Date),

format = "%Y-%m-%d")) #Date type
setup
allcolnames<-colnames(prices)
Date<- prices$Date[-1]
Pt<- prices[-1,-1]
Ptminus1<-prices[-(length(Date)+1),-1]
differences in prices
diffPrices <- cbind(Date, Pt-Ptminus1)
diffPrices$Label = "diffPrice"
log prices
logPrices<-cbind(Date = prices$Date,log(prices[,2:11]))
logPrices$Label = "logPrice"
net returns
netReturns<- cbind(Date, (Pt-Ptminus1)/Ptminus1) # (Pt-Pt-1)/(Pt-1)
gross returns
grossReturns<-cbind(Date, Pt/Ptminus1)
grossReturns$Label = "grossReturn"
log returns
logReturns<-cbind(Date, log(Pt/Ptminus1))
logReturns$Label = "logReturn"

prices$Label = "price"
netReturns$Label ="netReturn"
grossReturns$Label = "grossReturn"
logReturns$Label = "logReturn"

FUNCTION TO FLATTEN THE DATAFRAMES
flatten <- function(dataframe){

flattened_df <- rbind(setNames(dataframe[,c(1,2,12)],c("Date","Value","Label")),

21

setNames(dataframe[,c(1,3,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,4,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,5,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,6,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,7,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,8,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,9,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,10,12)],c("Date","Value","Label")),
setNames(dataframe[,c(1,11,12)],c("Date","Value","Label"))

)
flattened_df$asset<- rep(allcolnames[2:11], each = nrow(flattened_df)/10)
return (flattened_df)

}
FLATTENED DATAFRAMES
flatprices<- flatten(prices)
flatdiffPrices<-flatten(diffPrices)
flatlogPrices<-flatten(logPrices)
flatnetReturns<-flatten(netReturns)
flatgrossReturns<-flatten(grossReturns)
flatlogReturns<-flatten(logReturns)

ggplot(flatprices, mapping=aes(x=Value))+geom_density() +
labs(title = "Figure 1: Kernel Density Plots of Raw Price Data") +
facet_wrap(~asset, scales='free')

Time Series Plots
ggplot(flatprices, mapping=aes(x=Date, y = Value))+geom_line() +

facet_wrap(~asset, scales="free") +
labs(title = "Figure 2: Time Series Plot of Raw Prices")

Unit Root Tests for all of the data
library(kableExtra)
library(tseries)
KPSS
unitroot_table<-matrix(rep(NA,60),nrow=6) # one row per data set
prices
for (i in 2:11){

kps<- kpss.test(prices[,(i-1)])
unitroot_table[1, (i-1)] = round(kps$p.value,3)

}
for (i in 2:11){

kps<- kpss.test(diffPrices[,(i-1)])
unitroot_table[2, (i-1)] = round(kps$p.value,3)

}
for (i in 2:11){

kps<- kpss.test(logPrices[,(i-1)])
unitroot_table[3, (i-1)] = round(kps$p.value,3)

}
for (i in 2:11){

kps<- kpss.test(netReturns[,(i-1)])
unitroot_table[4, (i-1)] = round(kps$p.value,3)

}
for (i in 2:11){

kps<- kpss.test(grossReturns[,(i-1)])

22

unitroot_table[5, (i-1)] = round(kps$p.value,3)
}
for (i in 2:11){

kps<- kpss.test(logReturns[,(i-1)])
unitroot_table[6, (i-1)] = round(kps$p.value,3)

}
unitroot_table<-data.frame(unitroot_table)
rownames(unitroot_table)<-c("Prices","Diff in Prices", "Log Prices",

"Net Returns","Gross Returns","Log Returns")
colnames(unitroot_table)<-allcolnames[2:11]

kable(unitroot_table,
caption ="P-Values from the KPSS Test for different data transformations")%>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
kableExtra::kable_styling(latex_options = "hold_position")

Time Series Plots
ggplot(flatlogReturns, mapping=aes(x=Date, y = Value))+geom_line() +

facet_wrap(~asset, scales="free") +
labs(title = "Figure 3: Time Series Plot of Log Returns")

ggplot(flatlogReturns, mapping=aes(x=asset, y = Value))+geom_boxplot() +
labs(title = "Figure 4: Boxplots of Log Return Data")

ggplot(flatlogReturns, mapping=aes(x=Value))+geom_density() +
labs(title = "Figure 5: Kernel Density Plots of Log Return Data") +
facet_wrap(~asset, scales='free') +
theme(axis.text.x = element_text(size=6))

#axis.text.x = element_text(angle=90, hjust=1))

ggplot(flatlogReturns, aes(sample=Value)) +
stat_qq() +
stat_qq_line() + facet_wrap(~asset, scales="free") +
labs(title = "Figure 6: Quantile-Quantile Plots of Log Return Data")

total_pvals2 <- matrix(rep(NA,20),ncol=2)
for (i in 2:11){

total_pvals2[(i-1),1]<- allcolnames[i]
total_pvals2[(i-1),2]<-shapiro.test(logReturns[,i])$p.value

}
total_pvals2<-data.frame(total_pvals2)
colnames(total_pvals2)<-c("Asset","P-Value")

kable(total_pvals2,
caption ="P-Values from the Shapiro Wilks Test for Log Return Data")%>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed",
"responsive")) %>%

kableExtra::kable_styling(latex_options = "hold_position")

library(fGarch)
std_calc<-function(df){

total_std_table<- matrix(rep(NA,70),nrow=10)
total_sstd_table<- matrix(rep(NA,80),nrow=10)
for (i in 2:11){

STD

23

s1<- stdFit(df[,i],hessian=FALSE)
AIC_std = 2 * s1$objective + 2 * length(s1$par) # add 2*#params
BIC_std = 2 * s1$objective + log(length(df[,i])) * length(s1$par)
total_std_table[(i-1),1]<-allcolnames[i]
total_std_table[(i-1),2]<- round(s1$par[1],3)
total_std_table[(i-1),3]<- round(s1$par[2],3)
total_std_table[(i-1),4]<- round(s1$par[3],3)
total_std_table[(i-1),5]<- round(AIC_std,3)
total_std_table[(i-1),6]<- round(BIC_std,3)
total_std_table[(i-1),7]<- round(-s1$objective,3) # log likelihood

#SSTD
ss1<- sstdFit(df[,i],hessian=FALSE)
AIC_sstd = 2 * ss1$minimum + 2 * length(ss1$estimate) # add 2*#params
BIC_sstd = 2 * ss1$minimum + log(length(df[,i])) * length(ss1$estimate)
total_sstd_table[(i-1),1]<-allcolnames[i]
total_sstd_table[(i-1),2]<- round(ss1$estimate[1],3)
total_sstd_table[(i-1),3]<- round(ss1$estimate[2],3)
total_sstd_table[(i-1),4]<- round(ss1$estimate[3],3)
total_sstd_table[(i-1),5]<- round(ss1$estimate[4],3)
total_sstd_table[(i-1),6]<- round(AIC_sstd,3)
total_sstd_table[(i-1),7]<- round(BIC_sstd,3)
total_sstd_table[(i-1),8]<- round(-ss1$minimum,3)

}
total_std_table<- data.frame(total_std_table)
total_sstd_table<- data.frame(total_sstd_table)
colnames(total_std_table)<-c("Asset", "mean", "sd","df", "AIC","BIC",

"Log Likelihood")
colnames(total_sstd_table)<-c("Asset","mean", "sd","df",

"epsilon", "AIC","BIC","Log Likelihood")
return (list(stdtab = total_std_table, sstdtab = total_sstd_table))

}

kable(std_calc(logReturns)$stdtab, caption ="Parameter Estimates, AIC, BIC,
and Log Likelihood for Log Returns fitted to Standardized t Distribution")%>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed",
"responsive")) %>%

kableExtra::kable_styling(latex_options = "hold_position")

kable(std_calc(logReturns)$sstdtab, caption ="Parameter Estimates, AIC, BIC,
and Log Likelihood for Log Returns fitted to Skewed t Distribution")%>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed",
"responsive")) %>%

kableExtra::kable_styling(latex_options = "hold_position")

df = logReturns

plot_list = list()
outputused <- std_calc(df)$stdtab # the std table #df should be logReturns
outputused$mean<-as.numeric(as.character(outputused$mean))
outputused$sd<-as.numeric(as.character(outputused$sd))
outputused$df<-as.numeric(as.character(outputused$df))
outputused$AIC<-as.numeric(as.character(outputused$AIC))
outputused$BIC<-as.numeric(as.character(outputused$BIC))

24

outputused$`Log Likelihood`<-as.numeric(as.character(outputused$`Log Likelihood`))
outputused$mean<-as.numeric(as.character(outputused$mean))

for (i in 2:11){
data = df[,i]
#print(summary(f1n))
samples<- rstd(n=length(data), mean = outputused$mean[(i-1)],

sd = outputused$sd[i-1], nu=outputused$df[i-1])
Labels<-rep(c("Log Returns", "Std t Samples"), each = length(data))
Values<-c(data,samples)
table<-cbind(Values=Values,Labels=Labels)
table<-data.frame(table)
#table$Values<-as.numeric(table$Values)
table$Values <- as.numeric(as.character(table$Values))
temp <- ggplot(table, aes(x=Values, color=Labels)) +

geom_density(show.legend=FALSE) +ggtitle(allcolnames[i]) +
theme(#axis.title.x=element_blank(),

axis.text.x=element_blank()
)

plot_list[[i-1]] <-temp
}

#empty dataframe
dat <- data.frame(x=runif(10),y=runif(10))

p <- ggplot(dat, aes(x=x, y=y)) +
geom_point() +
scale_x_continuous(expand=c(0,0)) +
scale_y_continuous(expand=c(0,0))

p<- p + theme(axis.line=element_blank(),axis.text.x=element_blank(),
axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank())

my_hist <- ggplot(table, aes(Values, fill = Labels)) +
geom_bar() +theme(axis.line=element_blank(),axis.text.x=element_blank(),

axis.text.y=element_blank(),axis.ticks=element_blank(),
axis.title.x=element_blank(),
axis.title.y=element_blank())

plot_list[[11]] <- my_hist
grid.arrange(grobs=plot_list, ncol = 4,

top = "Figure 7: Estimated t distributions for Log Returns")

ggpairs(logReturns, columns=c(2,3,10,11,4,6,8,9,5,7), axisLabels="none", progress=FALSE,
upper = list(continuous = wrap("cor", size=3), combo = "box_no_facet"),
title = "Figure 8: Correlation between Assets")

pricescorr <- cor(prices[,c(2,3,10,11,4,6,8,9,5,7)])
logreturncorr <- cor(logReturns[,c(2,3,10,11,4,6,8,9,5,7)])
par(mfrow=c(1,2))
corrplot(pricescorr, type = "upper", title="Figure 9: Prices Correlation",

mar=c(0,0.25,1,0.25))
corrplot(logreturncorr, type = "upper", title="Figure 10: Log Returns Correlation",

25

mar=c(0,0.25,1,0.25))

#Search for the optimal multivariate t parameters
dfs = seq(2,10, 0.05)
n = length(dfs)
loglik = rep(0, n)
for (i in 1:n){

multi.t = cov.trob(logReturns[,(2:11)], nu=dfs[i])
loglik[i] = sum(dmt(logReturns[,(2:11)], mean=multi.t$center, S=multi.t$cov,

df = dfs[i], log=TRUE))
}
AICt = -2*loglik + 2*(1 + 10 + 10*(10+1)/2)
multi.t.df <- data.frame(df = dfs, Log.Likelihood = loglik, AIC = AICt)
^^^I ASSUMED THIS IS AICt. it said AIC = AIC before
ggplot(multi.t.df, aes(df, loglik)) + geom_line(col="steelblue") +

ggtitle("Figure 11: Log Returns Multivariate t Profile Likelihood")
nuhat <- dfs[loglik == max(loglik)]
multi.t.hat <- cov.trob(logReturns[,(2:11)], nu=nuhat)
mvnorm.loglik <- sum(dmnorm(logReturns[,(2:11)],

mean=apply(logReturns[,(2:11)], 2, mean),
varcov=cov(logReturns[,(2:11)]), log=TRUE))

AICn <- -2*mvnorm.loglik + 2*(10 + 10*(10+1)/2)
skewt <- mst.mple(y=logReturns[,(2:11)], penalty=NULL)
AICst <- -2 * skewt$logL + 2*(1 + 10 + 10*(10+1)/2)

find_weights.R
library(quadprog)
library(rlist)

data source
df = read.csv('datav2.csv')
the columns we care about
names = c('BTC', 'ETH', 'XMR', 'XRP', 'EUR', 'JPY', 'USD', 'CNY', 'GOLD', 'SILVER')
data = df[names]
N = length(names) # number of assets
setup variables for QP solver
constr_mat = matrix(rep(0, (2*N + 1)*N), 2*N + 1, N)
constr_vec = c(1, rep(0.01, N), rep(-0.25, N))
for (i in 1:N) {

constr_mat[1,i] = 1 # equality constraint
constr_mat[1+i,i] = 1
constr_mat[1+i+N,i] = -1

}
constr_mat = t(constr_mat) # transpose
quarter start and end dates

these are for datav2.csv
q_starts = c(

'2016-10-03',
'2017-01-03',
'2017-04-03',
'2017-07-03',
'2017-10-02',
'2018-01-02',

26

'2018-04-02',
'2018-07-02',
'2018-10-01',
'2019-01-02',
'2019-04-01',
'2019-07-01'

)
q_ends = c(

'2016-12-30',
'2017-03-31',
'2017-06-30',
'2017-09-29',
'2017-12-29',
'2018-03-30',
'2018-06-29',
'2018-09-28',
'2018-12-31',
'2019-03-29',
'2019-06-28',
'2019-09-30'

)
a function to find all weights in all quarters
find_weights_all <- function(get_weights_func) {

weights = matrix(rep(0, 100), 10, 10)
index_values = list()
all_index_values = c()
index_variances = rep(0, 10)
I_end = 100
for (q in 1:10) {

result = optimize_quarter(q, I_end, get_weights_func)
weights[q,] = result$weights
index_values = list.append(index_values, result$index_values)
index_variances[q] = result$variance

concatenate index values to one big vector
all_index_values = c(all_index_values, result$index_values)

update I_end
I_end = result$index_values[length(result$index_values)]

}
res = list(

weights=weights,
index_values=index_values,
all_index_values=all_index_values,
index_variances=index_variances)

return(res)
}
get dates for quarter
returns 4 dates:
data_start (start of data gathering period)
data_end (end of data gathering period)
q_start (start of quarter)
q_end (end of quarter)

27

get_indices_for_quarter <- function(q) {
data_start_date = q_starts[q]
data_end_date = q_ends[q+1]
quarter_start_date = q_starts[q+2]
quarter_end_date = q_ends[q+2]

d1 = which(df$Date == data_start_date)
d2 = which(df$Date == data_end_date)
q1 = which(df$Date == quarter_start_date)
q2 = which(df$Date == quarter_end_date)
res = list(data_start=d1, data_end=d2, q_start=q1, q_end=q2)

}
a function to find the weights for a given quarter
Inputs:
q (integer representing which quarter)
I_end (index value at the end of last quarter)
get_weights_func (function to get weights based on a list of prices)
Outputs:
result$
- weights
- index_values
- variance
optimize_quarter <- function(q, I_end, get_weights_func) {

Find relevant dates
start of 9 mos ago, end of 3 mos ago
start of quarter, end of quarter
date_indices = as.numeric(get_indices_for_quarter(q))
d1 = date_indices[1]
d2 = date_indices[2]
q1 = date_indices[3]
q2 = date_indices[4]
data to use to calculate covariance
last_two_quarters = df[d1:d2, names]

asset values at end of last quarter
A_end = as.numeric(df[d2, names])

get the weights
w = get_weights_func(last_two_quarters, I_end, A_end)

get the data for the given quarter
q_data = df[q1:q2, names]

calculate the index values
I = 0
for (i in 1:N) {

I = I + w[i] * q_data[i] * I_end / A_end[i]
}
make it a vector
I = as.numeric(unlist(I))

calculate the variance
v = var(I)

28

result = list(weights=w, index_values=I, variance=v)
}

get weights using the sample covariance of prices from the last 6 months
get_weights_simple <- function(data, I_end, A_end) {

col-wise division
data_weighted = data
for (i in 1:N) {

data_weighted[i] = data[i] * I_end / A_end[i]
}
the_cov = cov(data_weighted)
result = solve.QP(Dmat=2*the_cov, dvec=rep(0, N), Amat=constr_mat, bvec=constr_vec, meq=1)
print(result)
w = result$solution
return(w)

}
get weights using log returns
note: additional arguments not used
get_weights_log_returns <- function(data, ...) {

length of data
T = dim(data)[1]
log_returns = matrix(rep(0, (T - 1)*N), T - 1, N)
for (i in 1:N) {

log_returns[,i] = diff(as.numeric(unlist(log(data[i]))))
}
the_cov = cov(log_returns)
result = solve.QP(Dmat=2*the_cov, dvec=rep(0, N), Amat=constr_mat, bvec=constr_vec, meq=1)
w = result$solution
return(w)

}
get EWMA covariance
lambda = 0.99
get_ewma_cov <- function(data) {

mu = 0
xxT = 0

bias-corrected
mu_hat = 0
xxT_hat = 0

T = dim(data)[1]
for (t in 1:T) {

mu = lambda * mu + (1 - lambda) * data[t,]
mu_hat = mu / (1 - lambda ^ t)

xxT = lambda * xxT + (1 - lambda) * outer(data[t,], data[t,])
xxT_hat = xxT / (1 - lambda ^ t)

}
c_hat = xxT_hat - outer(mu_hat, mu_hat)
return(c_hat)

}
get weights using EWMA for prices
get_weights_price_ewma <- function(data, I_end, A_end) {

29

T = dim(data)[1]
data_weighted = matrix(rep(0, T*N), T, N)
for (i in 1:N) {

data_weighted[,i] = as.numeric(unlist(data[i] * I_end / A_end[i]))
}
the_cov = get_ewma_cov(data_weighted)
result = solve.QP(Dmat=2*the_cov, dvec=rep(0, N), Amat=constr_mat, bvec=constr_vec, meq=1)
w = result$solution
return(w)

}
get weights using EWMA for log returns
get_weights_log_ret_ewma <- function(data, ...) {

T = dim(data)[1]
log_returns = matrix(rep(0, (T - 1)*N), T - 1, N)
for (i in 1:N) {

log_returns[,i] = diff(as.numeric(unlist(log(data[i]))))
}
the_cov = get_ewma_cov(log_returns)
result = solve.QP(Dmat=2*the_cov, dvec=rep(0, N), Amat=constr_mat, bvec=constr_vec, meq=1)
w = result$solution
return(w)

}

get fitted-t covariance
currently doesn't work because covariance not symmetric
tcov <- function(data, ...){

dfs = seq(2,10, 0.05)
n = length(dfs)
loglik = rep(0, n)
model <- NA
opt <- -Inf
for (i in 1:n){

multi.t = cov.trob(data, nu=dfs[i])
loglik[i] = sum(dmt(data, mean=multi.t$center, S=multi.t$cov, df = dfs[i], log=TRUE))
print(loglik[i])
if (loglik[i] > opt){

model <- multi.t
opt <- loglik[i]

}
}
return(matrix(as.numeric(model$cov), 10, 10))

}
get_weights_log_returns_t <- function(data, ...) {

length of data
T = dim(data)[1]
log_returns = matrix(rep(0, (T - 1)*N), T - 1, N)
for (i in 1:N) {

log_returns[,i] = diff(as.numeric(unlist(log(data[i]))))
}
the_cov = tcov(log_returns)
result = solve.QP(Dmat=2*the_cov, dvec=rep(0, N), Amat=constr_mat, bvec=constr_vec, meq=1)
w = result$solution
return(w)

30

}

test the functions
result = find_weights_all(get_weights_simple)
result2 = find_weights_all(get_weights_log_returns)
(code used to find the optimal lambda is below)
lambda = 0.6551693
result3 = find_weights_all(get_weights_price_ewma)
lambda = 0.7655131
result4 = find_weights_all(get_weights_log_ret_ewma)
result_t = find_weights_all(get_weights_log_returns_t)
find the ideal weights
find_weights_ideal <- function() {

weights = matrix(rep(0, 100), 10, 10)
index_values = list()
all_index_values = c()
index_variances = rep(0, 10)
I_end = 100
for (q in 1:10) {

result = optimize_quarter_ideal(q, I_end)
weights[q,] = result$weights
index_values = list.append(index_values, result$index_values)
index_variances[q] = result$variance

concatenate index values to one big vector
all_index_values = c(all_index_values, result$index_values)

update I_end
I_end = result$index_values[length(result$index_values)]

}
res = list(

weights=weights,
index_values=index_values,
all_index_values=all_index_values,
index_variances=index_variances)

return(res)
}

optimize_quarter_ideal <- function(q, I_end) {
Find relevant dates
start of 9 mos ago, end of 3 mos ago
start of quarter, end of quarter
date_indices = as.numeric(get_indices_for_quarter(q))
d1 = date_indices[1] # don't need this one
d2 = date_indices[2]
q1 = date_indices[3]
q2 = date_indices[4]

get the data for the given quarter
q_data = df[q1:q2, names]

asset values at end of last quarter
A_end = as.numeric(df[d2, names])

31

get the weights
w = get_weights_simple(q_data, I_end, A_end)

calculate the index values
I = 0
for (i in 1:N) {

I = I + w[i] * q_data[i] * I_end / A_end[i]
}
make it a vector
I = as.numeric(unlist(I))

calculate the variance
v = var(I)

result = list(weights=w, index_values=I, variance=v)
}

result_ideal = find_weights_ideal()

plot(result_ideal$all_index_values, type='l',
main="Figure 12: Index Values for Ideal Weighting", xlab="Day", ylab="Index Value")

plot(result_ideal$index_variances, type='l',
main='Figure 13: Variances for Ideal Weighting',xlab="Quarter",ylab="Variance")

mean: 8.602228

function to calculate index and its variance in quarter q
given a single asset n
calculate_index_in_quarter <- function(q, I_end, n) {

Find relevant dates
start of 9 mos ago, end of 3 mos ago
start of quarter, end of quarter
date_indices = as.numeric(get_indices_for_quarter(q))
d1 = date_indices[1] # don't need this one
d2 = date_indices[2]
q1 = date_indices[3]
q2 = date_indices[4]
get the data for the given quarter
q_data = df[q1:q2, names]
asset values at end of last quarter
A_end = as.numeric(df[d2, names])
calculate the index values
I = q_data[n] * I_end / A_end[n]
make it a vector
I = as.numeric(unlist(I))
calculate the variance
v = var(I)
result = list(index_values=I, variance=v)

}
function to get index (and variance per quarter)
input: n ('index' of the asset)
get_single_asset_index <- function(n) {

all_index_values = c()
index_variances = rep(0, 10)

32

I_end = 100

for (q in 1:10) {
result = calculate_index_in_quarter(q, I_end, n)

index_variances[q] = result$variance

concatenate index values to one big vector
all_index_values = c(all_index_values, result$index_values)

update I_end
I_end = result$index_values[length(result$index_values)]

}
res = list(

all_index_values=all_index_values,
index_variances=index_variances)

return(res)
}

#, fig.cap="Figure12"
knitr::include_graphics("bias-correction.png")

test different lambda for ewma-price
par(mfrow=c(1,2))
lambdas = seq(0.5, 0.99999, length.out=30)
price_ewma_var = rep(0, length(lambdas))
for (i in 1:length(lambdas)) {

lambda = lambdas[i]
r = find_weights_all(get_weights_price_ewma)
price_ewma_var[i] = mean(r$index_variances)

}
best_lam_price = which.min(price_ewma_var)
#cat("best lambda for ewma price:", lambdas[best_lam_price], "var:", price_ewma_var[best_lam_price], "\n")
0.6551693 --> 11.7104
plot(lambdas, price_ewma_var, type="l", main="Average Variance using Prices vs. Decay Rate",cex.main=0.7, xlab="Rate of Decay", ylab="Average Variance")

test different lambda for ewma-log return
lambdas = seq(0.6, 0.99999, length.out=30)
logr_ewma_var = rep(0, length(lambdas))
for (i in 1:length(lambdas)) {

lambda = lambdas[i]
r = find_weights_all(get_weights_log_ret_ewma)
logr_ewma_var[i] = mean(r$index_variances)

}
best_lam_logr = which.min(logr_ewma_var)
#cat("best lambda for ewma log return:", lambdas[best_lam_logr], "var:", logr_ewma_var[best_lam_logr], "\n")
0.7655131 --> 10.51929
plot(lambdas, logr_ewma_var, type='l',

main='Average Variance using Log-Returns vs. Decay Rate', cex.main=0.7,
xlab="Rate of Decay", ylab="Average Variance")

plot(result$all_index_values, type='l', col='red')#, main="index values comparison")
lines(result2$all_index_values, type='l', col='blue')
lines(result3$all_index_values, type='l', col='orange')

33

lines(result4$all_index_values, type='l', col='aquamarine')
lines(result_t$all_index_values, type='l', col='deeppink')
lines(result_ideal$all_index_values, type='l', col='green')
legend(

"bottomright",
inset=0.05,
c('price', 'log-return', 'ewma price', 'ewma log-return', 'fitted-t log-return', 'ideal'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine', 'deeppink', 'green'))

plot the variance per quarter for each method
plot(result$index_variances, type='l', col='red')#, main="index variance per quarter comparison")
lines(result2$index_variances, type='l', col='blue')
lines(result3$index_variances, type='l', col='orange')
lines(result4$index_variances, type='l', col='aquamarine')
lines(result_t$index_variances, type='l', col='deeppink')
lines(result_ideal$index_variances, type='l', col='green')
legend(

"topright",
inset=0.05,
c('price', 'log-return', 'ewma price', 'ewma log-return', 'fitted-t log-return', 'ideal'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine', 'deeppink', 'green'))

table<-matrix(c("Price", "Price EWMA","Log-Return","Log-Return t-dist",
"Log-Return EWMA", "Ideal", 11.90243, 11.7104, 11.56243,
11.56862, 10.51929, 8.602228), byrow=FALSE, ncol=2)

table<-data.frame(table)
colnames(table) <- c("Method", "Average Variance Per Quarter")
kable(table, caption ="Comparison of Methods")%>%

kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
kableExtra::kable_styling(latex_options = "hold_position")

get results for single assets
btc_result = get_single_asset_index(1)
usd_result = get_single_asset_index(7)
gold_result = get_single_asset_index(9)
plot the results vs. chosen index
plot BTC first because it's the largest
plot(btc_result$all_index_values, type='l', col='red',

main="Figure 18: Our index values vs Single asset index")
lines(result4$all_index_values, type='l', col='blue')
lines(usd_result$all_index_values, type='l', col='orange')
lines(gold_result$all_index_values, type='l', col='aquamarine')
legend(

"topright",
inset=0.05,
c('btc', 'mixed', 'usd', 'gold'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine'))

34

log of index values since raw values are too wide-ranging
plot(log(btc_result$all_index_values),

type='l', col='red',
main="Figure 19: Log of our index values vs Single asset index", ylim=c(4, 10))

lines(log(result4$all_index_values), type='l', col='blue')
lines(log(usd_result$all_index_values), type='l', col='orange')
lines(log(gold_result$all_index_values), type='l', col='aquamarine')
legend(

"topright",
inset=0.05,
c('btc', 'mixed', 'usd', 'gold'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine'))

variance per quarter
plot(btc_result$index_variances, type='l', col='red',

main="Figure 20: Our index variance vs. Single asset variance")
lines(result4$index_variances, type='l', col='blue')
lines(usd_result$index_variances, type='l', col='orange')
lines(gold_result$index_variances, type='l', col='aquamarine')
legend(

"topright",
inset=0.05,
c('btc', 'mixed', 'usd', 'gold'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine'))

plot(log(btc_result$index_variances),
type='l', col='red',
main="Figure 21: Log of our index variance vs. Single asset variance", ylim=c(-3, 15))

lines(log(result4$index_variances), type='l', col='blue')
lines(log(usd_result$index_variances), type='l', col='orange')
lines(log(gold_result$index_variances), type='l', col='aquamarine')
legend(

"topright",
inset=0.05,
c('btc', 'mixed', 'usd', 'gold'),
lwd=2,
lty=c(1, 1, 1),
col=c('red', 'blue', 'orange', 'aquamarine'))

Import Data
pmdata <- read.csv("datav2.csv")
#Create log price data
pmdata2 <- pmdata %>%

mutate_at(dplyr::vars(-Date), log) %>%
mutate(Date = as.Date(Date, format="%Y-%m-%d"))

#Create log return data
pmdata3 <- pmdata2 %>%

mutate(BTC = c(0,diff(BTC)),
ETH = c(0,diff(ETH)),

35

EUR = c(0,diff(EUR)),
GOLD = c(0,diff(GOLD)),
JPY = c(0,diff(JPY)),
SILVER = c(0,diff(SILVER)),
CNY = c(0,diff(CNY)),
USD = c(0,diff(USD)),
XMR = c(0,diff(XMR)),
XRP = c(0,diff(XRP))) %>%

dplyr::filter(BTC != 0)

Fitting ARIMA Models
#Append a column containing the quarter number to the dataset
quarternum <- function(Date){

if (Date <= "2016-12-31"){
1

} else if (Date <= "2017-03-31"){
2

} else if (Date <= "2017-06-30"){
3

} else if (Date <= "2017-09-30"){
4

} else if (Date <= "2017-12-31"){
5

} else if (Date <= "2018-03-31"){
6

} else if (Date <= "2018-06-30"){
7

} else if (Date <= "2018-09-30"){
8

} else if (Date <= "2018-12-31"){
9

} else if (Date <= "2019-03-31"){
10

} else if (Date <= "2019-06-30"){
11

} else {
12

}
}
#First remove the final quarter from the log-prices dataset
pmdata5 <- pmdata2 %>%

rowwise() %>%
mutate(quarter = quarternum(Date))

pmdata6 <- pmdata5 %>%
dplyr::filter(quarter == 12) %>%
dplyr::select(-quarter)

pmdata5 <- pmdata5 %>%
dplyr::filter(quarter != 12) %>%
dplyr::select(-quarter)

results <- matrix(0, nrow=10, ncol=4)
for (i in 2:11){

model <- auto.arima(pmdata5[,i], max.p=5, max.q=5, ic="bic")
results[i-1,1:3] = arimaorder(model)
results[i-1,4] = model$bic

36

}
rownames(results) <- colnames(pmdata5[,-1])
colnames(results) <- c("p","d","q","BIC")

results %>% kable(caption="Optimal Arima Models") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
kableExtra::kable_styling(latex_options = "hold_position")

par(mfrow=c(2,5))
for (i in 1:10){

temp <- auto.arima(pmdata5[,i+1], max.p=5, max.q=5, ic="bic")
acf(temp$residuals, lag.max=50, main=rownames(results)[i])
Box.test(temp$residuals, lag=5, type="Ljung-Box", fitdf=(results[i,1]+results[i,3]))

}

#Box-Ljung Tests
#Note, the value of k was manually changed from 2 to 11 as the Box.test function does not
#display results when inside a loop
k = 11
temp <- auto.arima(pmdata5[,k], max.p=5, max.q=5, ic="bic")
Box.test(temp$residuals, lag=5, type="Ljung-Box", fitdf=results[k-1,1]+results[k-1,3])
Box.test(temp$residuals, lag=10, type="Ljung-Box", fitdf=results[k-1,1]+results[k-1,3])
Box.test(temp$residuals, lag=25, type="Ljung-Box", fitdf=results[k-1,1]+results[k-1,3])

Forecasting
days <- nrow(pmdata2) - nrow(pmdata5)
lb <- pmdata6
est <- pmdata6
ub <- pmdata6
for (i in 2:11) {

temp <- auto.arima(pmdata5[,i], max.p=5, max.q=5, ic="bic")
predtemp <- predict(temp, n.ahead=days, se.fit=TRUE)
lb[,i] = predtemp$pred - 1.96*predtemp$se
est[,i] = predtemp$pred
ub[,i] = predtemp$pred + 1.96*predtemp$se

}
forecastlb <- as.data.frame(pmdata5 %>% bind_rows(lb))
forecastdata <- as.data.frame(pmdata5 %>% bind_rows(est))
forecastub <- as.data.frame(pmdata5 %>% bind_rows(ub))
p <- list()
for (i in 2:11){

newdf <- data.frame(date=pmdata2$Date, Actual=pmdata2[,i], Forecast=forecastdata[,i],
Lower.Bound = forecastlb[,i], Upper.Bound=forecastub[,i]) %>%

dplyr::filter(date>="2018-07-01") %>%
gather("Series", "Log.Price", 2:5)

p[[i-1]] <- ggplot(newdf, aes(x=date, y=Log.Price, color=Series)) +
geom_line() + theme(legend.position="none") +
scale_color_manual(values=c("black", "steelblue", "firebrick", "sea green")) +
aes(group=rev(Series)) +
ggtitle(colnames(pmdata2)[i])

}
do.call(grid.arrange, c(p, ncol=3, top = "Figure 23: Log Price Forecasts"))

37

	Abstract
	Data Preparation: Cleaning, Imputation, and Conversions
	Univariate Analysis
	Multivariate Analysis
	Building the Index
	Framing the Optimization Problem as a Quadratic Program
	Covariance of Prices
	Covariance of Log-Returns
	Covariance of Log-Returns from Fitted t-distribution
	Bias-Corrected Exponential Smoothing
	EWMA Decay Rate
	Index Performance Results

	Time Series & Forecasting
	Conclusion
	R Code Used

