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1 Introduction

Conventional statistical wisdom tells us that overparameterizing a model results in high variance and poor
generalization. In other words, the model overfits the training data. However, recent works have demon-
strated empirically that as the number of parameters approaches the interpolation limit, the population
risk diverges. Interestingly, the risk descends beyond the interpolation limit and in certain cases, the global
minimum is achieved in the overparameterized region. Much effort has been spent trying to explain this
behaviour. Hastie et al. in [2] demonstrate the benefits of overparameterization in minimum-norm least
squares regression and Ba et al. in [1] derive exact population risk quantities in two-layer neural-networks.
In this work, we turn to classic interpolating functions, polynomials, to observe whether they benefit from
overparameterizing. Muthukumar et al. in [3] consider an empirical investigation of Vandermonde and
Legendre features and offer bounds on the test mean-squared error though they assume that the data must
be generated from a linear model.

2 Set-up

Consider a target function G(x) : R→ R from which unique data pairs (xi, yi) are generated with additive

Gaussian noise as yi = G(xi) + εi, where (xi, εi)
iid∼ Px×Z and Z ∼ N(0, σ2). Before discussing the model

class, let’s first establish the relevant notation. Let F be the class of polynomial functions, F = {f(x, θ) =

θ1x+ θ2x
2 + · · ·+ θdx

d =
∑d
j=1 θjx

j , d ∈ N, θ ∈ Rd}. We have d denoting the degree of the polynomial and

let n be the sample size. For convenience, define the feature map φd : R → Rd as φd(x) = [x, x2, ..., xd].
We can then represent F as F = {f(x, θ) = 〈θ, φd(x)〉, d ∈ N, θ ∈ Rd}.

Our objective is to select a polynomial function f ∈ F that minimizes the mean squared error loss:

L((x, y), f) =
1

n

n∑
i=1

(yi − f(xi))
2

Once we have selected the parameter vector θ̂ based on the polynomial feature matrix constructed with
the observed data, Xφ, we are then interested in the asymptotic behaviour of the prediction risk for a new
point x0 ∼ Px as n, d→∞. This is defined as:

R(θ̂) = E
[
(G(x0)− 〈θ̂, φd(x0)〉)2|Xφ

]
In order to decompose the prediction risk into the usual bias and variance terms, one typically uses the
properties of the inner product. However, for a general non-linear G, this is not entirely straightforward.
In much of the related work, a linear model for G is assumed or the model is linearized around a random
initialization on the basis that the parameters will only change slightly. Here, we take a different approach.
Assume that G is an analytic function in an open interval D where {0, x1, . . . , xn} ∈ D and G(0) = 0. As
we are considering polynomial functions, rewrite the target as G(x) = 〈θ∗, φd(x)〉 where θ∗ is interpreted as

the Taylor coefficients as d→∞. When θ̂ is an unbiased estimator, the risk can be decomposed as:

R(θ̂) = E
[
(G(x0)− 〈θ̂, φd(x0)〉)2|Xφ

]
= E

[
(〈θ∗, φd(x0)〉 − 〈θ̂, φd(x0)〉)2|Xφ

]
= E

[
(φd(x0)T (θ∗ − θ̂))2|Xφ

]
= E

[
(θ∗ − θ̂)Tφd(x0)φd(x0)T (θ∗ − θ̂)|Xφ

]
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In order to proceed, we require Cov(φd(x)). We specifically excluded a bias term x0 in the feature matrix
to avoid a 0 in the first element of this covariance matrix. For now, denote Σ = Cov(φd(x)) and we will
return to this point after imposing a specific distribution on x ∼ Px. Returning to the prediction risk
decomposition, define ||z||2Σ = zTΣz and note the following:

R(θ̂) = E
[
(θ∗ − θ̂)Tφd(x0)φd(x0)T (θ∗ − θ̂)|Xφ

]
= E

[
||θ∗ − θ̂||2Σ|Xφ

]
= E

[
||θ̂ − E[θ̂] + E[θ̂]− θ∗||2Σ|Xφ

]
= E

[
||θ̂ − E[θ̂]||2Σ + 2(θ̂ − E[θ̂])Σ(E[θ̂]− θ∗) + ||E[θ̂]− θ∗||2Σ|Xφ

]
= E

[
||θ̂ − E[θ̂]||2Σ|φ

]
+ E

[
||E[θ̂]− θ∗||2Σ|Xφ

]
= ||E[θ̂|Xφ]− θ∗||2Σ + E

[
||θ̂ − E[θ̂]||2Σ|Xφ

]
= ||E[θ̂|Xφ]− θ∗||2Σ + Tr(Cov(θ̂|Xφ)Σ)

In the above, B(θ̂) = ||E[θ̂|Xφ] − θ∗||2Σ represents the bias and V (θ̂) = Tr(Cov(θ̂|Xφ)Σ) represents the

variance. To compute these values, we require an explicit form for θ̂.

3 Parameter Estimate

Recall the empirical loss function to be optimized,

min
f∈F

L((x, y), f) =
1

n

n∑
i=1

(yi − f(xi))
2 =⇒ min

θ∈Rd

1

n

n∑
i=1

(yi − 〈θ, φd(xi)〉)2 =
1

n
(y −Xφθ)

2

The solution to this problem depends on n and d, the dimensions of the feature matrix Xφ ∈ Rn×d as they
impact the rank of the matrix. The following are the possible solutions:

1. When d < n, Xφ is full column rank and XTX is invertible. Thus, θ̂ can be obtained using the

standard least squares solution, θ̂ = (XTX)−1XT y.

2. When d = n, Xφ is a full rank square matrix so using least squares, θ̂ = (XTX)−1XT y = X−1y.
Unless the error term is not truly random, there is a unique degree d interpolator of the data.

3. When d > n, there are infinite number of interpolating polynomials. In other words, the solution to
the minimization problem is no longer unique and the objective function is equal to zero at each of
these minimizers. We choose to compute the minimum norm solution. That is, solve:

min
θ∈Rd

θT θ s.t. y = Xφθ

Constructing the Lagrangian L(θ, λ) = θT θ + λT (Xφθ − y), taking derivatives and setting to 0 will

yield θ̂ = XT
φ (XφX

T
φ )−1y. Notice that XT

φ (XφX
T
φ )−1 is the Moore-Penrose pseudoinverse of Xφ.

Alternatively, we can represent this by letting (XT
φXφ)+ = lim

λ→0+
(XT

φXφ + λI)−1 and recalling that

(XT
φXφ)+XT → XT

φ (XφX
T
φ )−1.

4 Gaussian Data - Vandermonde Features

Assuming that xi ∼ Px = N(0, 1), notice that Σ = Cov(φd(x)) is:

Σ =


E[X2] E[X3] E[X4] . . . E[Xd+1]
E[X3] E[X4] E[X5] . . . E[Xd+2]
E[X4] E[X5] E[X6] . . . E[Xd+3]

...
. . .

...
E[Xd+1] E[Xd+2] E[Xd+3] . . . E[X2d]

 =


1 0 3 . . . E[Xd+1]
0 3 0 . . . E[Xd+2]
3 0 15 . . . E[Xd+3]
...

. . .
...

E[Xd+1] . . . . . . . . . (2d− 1)!!


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Equipped with Σ, let’s first consider the underparameterized case. The bias is:

B(θ̂) = ||E[θ̂|Xφ]− θ∗||2Σ = ||(XT
φXφ)−1XT

φ E[y|Xφ]− θ∗||2Σ = ||(XT
φXφ)−1XT

φXφθ
∗ − θ∗||2Σ = 0

and the variance is:

V (θ̂) = Tr(Cov(θ̂|Xφ)Σ) = Tr(Cov((XT
φXφ)−1XT

φ y|Xφ)Σ)

= Tr((XT
φXφ)−1XT

φ Cov(ε)Xφ(XT
φXφ)−1Σ) = σ2 Tr((XT

φXφ)−1Σ)

There are two challenges in computing an exact expression for the variance. First, Σ is not an easy to
handle matrix. While all elements are guaranteed to be finite, it is far from the identity matrix. Second, the

entries of Xφ are not iid. While each xi
iid∼ N(0, 1), the features generated by φd(xi) are not independent.

In addition to the above challenges, we will observe in Section 6 that we do not observe benefits of
overparameterization on the plain Vandermonde polynomial features. However, in the next section we will
reconfigure the feature map to generate a better conditioned Σ.

5 Uniform Data - Legendre Features

In this section, we will assume that xi ∼ Px = U(−1, 1). We will also make a change to the feature map.
Instead of the ill conditioned pure Vandermonde features, we will define a new map νd(x) : R → RD as

νd(x) =
[√

3
2p1(x),

√
5
2p2(x), . . . ,

√
d+ 1

2pd(x)
]T

where pj(x) is the jth Legendre polynomial evaluated at

x ∈ [−1, 1]. The reasoning behind this choice of polynomials is that the Legendre polynomials form an
orthogonal system and have 0 mean. That is, when xi ∼ Px = U(−1, 1), p(x) = 1

2 and:∫ 1

−1

pj(x)p(x)dx =
1

2

∫ 1

−1

pj(x)dx = 0∫ 1

−1

pi(x)pj(x)p(x)dx =
1

2

∫ 1

−1

pi(x)pj(x)dx = 0 for i 6= j∫ 1

−1

pj(x)pj(x)p(x)dx =
1

2

∫ 1

−1

pj(x)pj(x)dx =
1

j + 1
2

For our choice of constants multiplied to the Legendre polynomials, the final integral reduces to 1
2 . Now,

putting these pieces together, we see that Σ = Cov(νd(x)) = 1
2Id. To further understand the risk decom-

position, we must first replace all instances of Xφ with Xν .

Now, in the underparameterized regime, once again the bias is:

B(θ̂) = ||E[θ̂|Xν ]− θ∗||2Σ = ||(XT
ν Xν)−1XT

ν E[y|Xν ]− θ∗||2Σ = ||(XT
ν Xν)−1XT

ν Xνθ
∗ − θ∗||2Σ = 0

and the variance is:

V (θ̂) = Tr(Cov(θ̂|Xν)Σ) = Tr(Cov((XT
ν Xν)−1XT

ν y|Xν)Σ)

=
1

2
Tr((XT

ν Xν)−1XT
ν Cov(ε)Xν(XT

ν Xν)−1Id) =
σ2

2
Tr((XT

ν Xν)−1XT
ν Xν(XT

ν Xν)−1)

=
σ2

2
Tr((XT

ν Xν)−1) =
σ2

2n
Tr(Σ̂−1) =

σ2

2n

d∑
i=1

1

si
=
σ2d

2n

d∑
i=1

1

dsi

where nΣ̂ = XT
ν Xν is the empirical covariance matrix and si are the eigenvalues of Σ̂. Given that the rows

of Xν are iid, isotropic, the Uniform distribution is log-concave, and that the use of polynomial features
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ensures that XT
ν Xν is invertible when d ≤ n, we have the Marchenko-Pastur theorem for isotropic xi from

[6] and [5]. If we can assume that smin ≥
(1−
√
d/n)2

2 , this is the same as the underparameterized setting in

Hastie et. al [2] aside from the factor of 1
2 . Thus we find that R(θ̂) = V (θ̂) = σ2γ

2−2γ where γ = d/n.

Turning to the overparameterized setting where d > n and θ̂ = (XT
φXφ)+XT y, notice that the Σ-norm is

the l2-norm as Σ = Id. Denote r2 = ||θ∗||22. Then, the bias is:

B(θ̂) = ||E[θ̂|Xν ]− θ∗||22 = ||XT
ν (XνX

T
ν )−1Xνθ

∗ − θ∗||22 = ||θ∗(Id −XT
ν (XνX

T
ν )−1Xν)||22

= θ∗T (Id −XT
ν (XνX

T
ν )−1Xν)(Id −XT

ν (XνX
T
ν )−1Xν)θ∗ = θ∗T (Id −XT

ν (XνX
T
ν )−1Xν)θ∗

= ||θ∗||22 − (Xνθ
∗)T (XνX

T
ν )−1(Xνθ

∗) ≤ ||θ∗||22 = r2

where the inequality follows from the fact that XνX
T
ν is positive definite. In Hastie et. al [2], the authors

demonstrate that r2 also exhibits behaviour following a double descent pattern. and that we expect the
upper bound on B(θ̂) to decay as γ increases. Finally, the overparamaterized variance is:

V (θ̂) = Tr(Cov(θ̂|Xν)Σ) = Tr(Cov(XT
ν (XνX

T
ν )−1y|Xν)Σ)

=
1

2
Tr(XT

ν (XνX
T
ν )−1Cov(ε)(XνX

T
ν )−1XνId) =

σ2

2
Tr(XT

ν (XνX
T
ν )−1(XνX

T
ν )−1Xν)

=
σ2

2
Tr((XνX

T
ν )−1) =

σ2

2d

n∑
i=1

1

ti
=
σ2n

2d

n∑
i=1

1

nti

where ti are the eigenvalues of of 1
dXνX

T
ν . Under the same assumptions as the d < n case, this is the

isotropic features overparameterized case of Hastie et. al [2] and so V (θ̂) = σ2

2γ−2 and R(θ̂) ≤ r2 + σ2

2γ−2 . In

summary, when d < n, the risk diverges as d→ n and after, we see the risk descend as d/n increases.

6 Empirical Evidence

Consider the data generating target function G(x) = 3x sin(10x). We generate 15 points from G(x) and
fit polynomials of varying degrees using each feature map. Then we examine the average test risk as an
estimate of the prediction risk. Figure 1 demonstrates that pure polynomial features fail to generalize. We
attribute this to the inability to control the covariance matrix of the Vandermonde features. The test loss
plot shows that prediction risk diverges before reaching the interpolation limit and does not decline when
the polynomial degree exceeds sample size.

(a) Sample Models (b) Test Loss

Figure 1: Vandermonde Features
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(a) Sample Models - Legendre (b) Test Loss - Legendre

(c) Sample Models - Adjusted Legendre (d) Test Loss - Adjusted Legendre

Figure 2: Legendre Features Example

On the other hand, in Figure 2, we see the desired behaviour. The high degree polynomials constructed
with Legendre features do tend to generalize well. As d → n, the test loss diverges before descending
as the polynomial degree greatly exceeds the sample size. Notice that this is present in the unadjusted
and adjusted Legendre features. In the adjusted Legendre features, the interpolating polynomials tend to
concentrate around 0 and deviate close to the observations with the amount of fluctuation increasing as the
degree decreases. In summary, our empirical results match the theoretical analysis in that we observe the
double descent curve when using Legendre polynomial features but not with Vandermonde features.
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